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Borrelia burgdorferi is a causative agent of Lyme disease in North America and Eurasia. The first complete
genome sequence of B. burgdorferi strain 31, available for more than a decade, has assisted research on the
pathogenesis of Lyme disease. Because a single genome sequence is not sufficient to understand the relation-
ship between genotypic and geographic variation and disease phenotype, we determined the whole-genome
sequences of 13 additional B. burgdorferi isolates that span the range of natural variation. These sequences
should allow improved understanding of pathogenesis and provide a foundation for novel detection, diagnosis,

and prevention strategies.

Lyme disease is the most frequent tick-borne disease in
North America and Europe (3, 16, 17). There are multiple
variants of B. burgdorferi (1, 7, 15, 20, 21), the causative agent,
but questions remain about how their variation correlates with
different clinical manifestations. Whole-genome sequencing
(WGS) can orient approaches to diagnostics and vaccines and
help avoid potential host cross-reactivity. Improved diagnostics
are needed because the best clinical sign, the erythema migrans
skin rash, does not always occur. Diagnostic assays and vac-
cines (18) have been less than satisfactory. However, these
were developed before WGS of microbes and the human ge-
nome. This project was stimulated by the initial finding of
genotypes of B. burgdorferi associated with invasiveness/dis-
semination (15). This has been substantiated (7, 21).

The sequencing of strain B31 (6, 8) has accelerated progress
in Lyme disease research. We sequenced 13 additional isolates,
chosen to cover a large fraction of the genetic and geographic
diversity and obtained from humans and other natural hosts
(Table 1).

These genomes were sequenced by the random shotgun
method as described previously, using Sanger DNA sequencing to
an estimated 8-fold coverage (12). Approximately 10,000 and
6,000 successful reads for the small and medium insert plasmid
libraries, respectively, were sequenced, representing a total of
about 14 Mbp of sequencing data for each. All plasmids were
sequenced to closure unless noted otherwise (see Table S1 in the

* Corresponding author. Mailing address for Steven E. Schutzer:
Department of Medicine, University of Medicine and Dentistry of
New Jersey—New Jersey Medical School, Newark, NJ 07103. E-mail:
schutzer@umdnj.edu. Mailing address for Sherwood R. Casjens:
Department of Pathology, University of Utah Medical School, Room
2200 EEJMRB, 15 North Medical Dr. East, Salt Lake City, UT 84112.
E-mail: sherwood.casjens@path.utah.edu.

+ Supplemental material for this article may be found at http://jb
.asm.org/.

¥ Published ahead of print on 8 October 2010.

1018

supplemental material). Genome annotation was performed us-
ing the JCVI Prokaryotic Annotation Pipeline (www.jcvi.org/cms
/research/projects/prokaryotic-annotation-pipeline/overview/).

The B31 sequence showed that B. burgdorferi has many
more replicons (DNA molecules) than other bacteria. Be-
sides its 910-kbp linear chromosome, strain B31 has been
shown to have 12 linear and 10 circular plasmids (5), ex-
panding observations (2, 10) indicating that Borrelia bacteria
universally harbor numerous plasmids, many essential for
survival of the bacteria in mice and/or ticks (4). The newly
sequenced genomes contain a total of 17,084,900 bp, aver-
aging 1,314,223 bp/genome. Each strain carried between 13
and 21 plasmids (239 plasmids were sequenced, about half
predicted to be linear replicons). At least 9 new plasmid
types not in B31 were identified. Many plasmids underwent
substantial rearrangements in different lineages. The linear
chromosomes are very stable, with little variation among
isolates. With the exception of a few differences at their
right ends, the gene content of the chromosomes is essen-
tially identical. Contrary to previous assumptions that ge-
netic changes occurred only by slower point mutations, our
initial WGS comparison of 4 strains showed that closely
related B. burgdorferi strains frequently and more rapidly
than by point mutation undergo horizontal exchange of ge-
netic information (14). Evidence of this is also found in the
newer genomes sequenced in this work.

The genetic diversity of B. burgdorferi appears to be main-
tained in part by neutral and adaptive processes, such as resis-
tance to host immune defense mechanisms and host prefer-
ences (4, 9). Key questions remain on the genomic basis of
these intra- and interspecific variations, particularly those as-
sociated with host resistance, high-frequency proliferation in
wildlife populations, and invasiveness in humans.

Our long-range objectives are to develop a pangenomic pic-
ture of B. burgdorferi diversity (13) and to understand how the
variations influence pathogenicity. We believe solutions for
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TABLE 1. B. burgdorferi isolates used in this study

No. of contigs in

Borrelia burgdorferi rRNA IGS1 MLST OspC Chromosome Total no. of bp h No. of Genome
isolate” lineage” type” type” sequencing status sequenced caromosome plasmids® Project ID?
(no. of bp)
64b 3 7 Ba Draft 1,485,884 6 (905,796) 18 28633
724" 26 14 G Draft 1,267,789 6 (905,797) 13 21003
94a 8 18 U Draft 1,295,451 9 (906,731) 14 20999
118a 20 34 J Draft 1,453,013 8(903,362) 19 21001
156a 12 4 Hb Complete 1,469,834 1(908,814) 20 19835
297 2 3 K Not sequenced 508,697 20 39123
29805 6 12 M Draft 1,344,204 38 (887,933) 15 28621
B31¢ 1 1 A Complete 1,522,832 1(910,724) 21 3
Bol26 3 S Draft 1,321,434 4(909,216) 13 19837
CA-11.2A 19 70 Db Draft 1,294,354 14 (907,566) 13 28629
JD1 24 11 C Complete 1,531,287 1(922,801) 20 39121
N40 9 19 E Complete 1,339,552 1(902,191) 17 39119
WI91-23 7 71 Ta Draft 1,427,907 31 (896,127) 21 28627
757 16 20 Bb Draft 1,345,494 1(906,707) 14 19839

“ Table S1 in the supplemental material gives the origins and sources of these strains.

® According to Travinsky et al. (20) and references therein.

¢ Nearly all plasmids were sequenced to closure; the few remaining in draft status are noted in Table S1 in the supplemental material.

9 The Genome Project ID retrieves the data from each genome in the NCBI Entrez Genome Project Database (www.ncbi.nlm.nih.gov/genomeprj/GPID).

¢ The sequence of the genome of strain B31 was previously reported and is included here for comparison. Its bp value includes terminal bp determined by Fraser
et al. (8), Zhang et al. (22), Huang et al. (11), and Tourand et al. (19). We independently determined the sequence to the tips of the B31 Ip54 plasmid, and our results
are in agreement with those of Tourand et al. (19); (J. Aron, S. Casjens, and W. M. Huang, unpublished). The B31 1p28-1 length was assembled from several published

sources.

/This is not the same as isolate 72a reported by Qiu et al. (14). That original 72a strain is apparently lost.

many of the problems associated with Lyme disease will come
from scientific information, beginning with comparative

genomics of this organism. Sequencing is a superb discovery ’
tool whose greatest impact is realized when additional biology
can implemented. Information from WGS of these well-char-
acterized strains should provide a foundation for new hypoth-

9

eses on the pathogenesis of Lyme disease and rational diag-
nostics and vaccines.

Nucleotide sequence accession numbers. These sequences 10.

have been deposited in GenBank, and their Genome Project

ID numbers and accession numbers are listed in Table 1 and in 11.

Table S1 in the supplemental material, respectively.
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